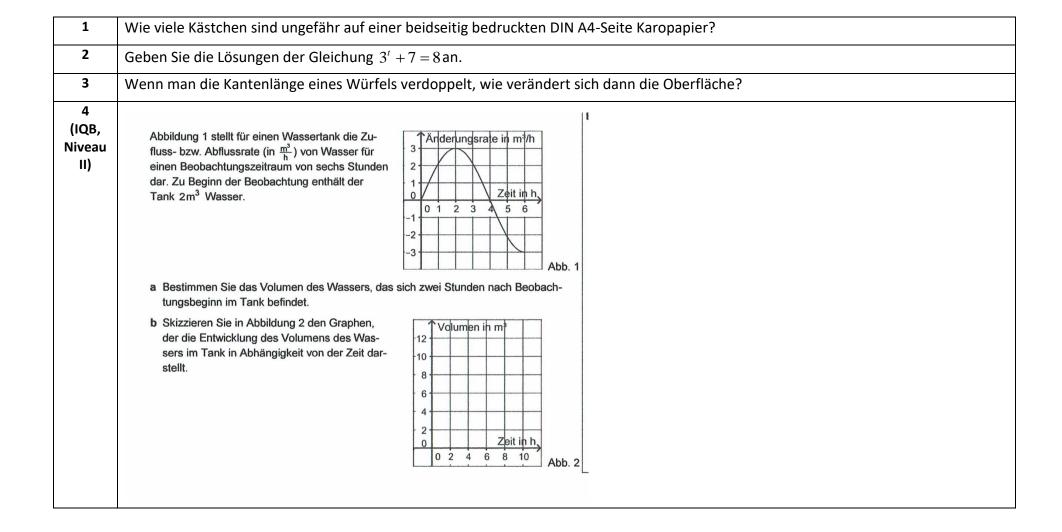

1	Berechnen Sie näherungsweise $348cm \cdot 4,1m$.		
2	Lösen Sie die Gleichung $3 \cdot n - 15 = 4 \cdot n + 1$.		
3	200 € werden jährlich mit 5% verzinst. Wie viel ist nach 2 Jahren auf dem Konto?		
4 (IQB; Niveau I)	Gegeben ist die Funktion f mit $f(x) = \sqrt{x-1} \cdot (\frac{1}{2}x - \frac{8}{5})$ und maximalem Definitionsbereich D. a Geben Sie D an. b Bestimmen Sie die Nullstellen von f. c Entscheiden Sie, welcher der abgebildeten Graphen I bis IV die Funktion g mit $g(x) = -f(x)$ darstellt. Begründen Sie Ihre Entscheidung.		


1	Berechnen Sie näherungsweise $348cm \cdot 4,1m$.	$ca.14m^2$
2	Lösen Sie die Gleichung $3 \cdot n - 15 = 4 \cdot n + 1$.	n = -16
3	200 € werden jährlich mit 5% verzinst. Wie viel ist nach 2 Jahren auf dem Konto?	220,50 €
4	Gegeben ist die Funktion f mit $f(x) = \sqrt{x-1} \cdot (\frac{1}{2}x - \frac{8}{5})$ und maximalem Definitionsbereich D. a Geben Sie D an. b Bestimmen Sie die Nullstellen von f. c Entscheiden Sie, welcher der abgebildeten Graphen I bis IV die Funktion g mit $ \begin{array}{c c} I & 1 \\ 0 & 1 \end{array} $ $ \begin{array}{c c} I & 1 \\ 0 & 2 \end{array} $ $ \begin{array}{c c} I & 1 \\ 0 & 2 \end{array} $ $ \begin{array}{c c} I & 1 \\ 0 & 1 \end{array} $	a) D=[1; ∞ [b) $f(x) = 0 \Leftrightarrow \sqrt{x-1} = 0 \lor \frac{1}{2}x - \frac{8}{5} = 0 \Leftrightarrow x = 1 \lor x = \frac{16}{5}$ c) Graph I, Begründung: D=[1; ∞ [und $-f(2) > 0$
	g(x) = -f(x) darstellt. Begründen Sie Ihre Entscheidung.	

1	Wie alt sind alle Schüler der Schule zusammen? Überschlage!	
2	Geben Sie eine Gleichung mit den Lösungen $t=3\mathrm{und}\ t=-5\mathrm{an}.$	
3	Die Halbwertszeit einer radioaktiven Substanz beträgt eine Woche. Wann ist nur noch etwa ein Tausendstel der Substanz vorhanden?	
4 (IQB; Niveau I)	Gegeben ist die in IR definierte Funktion $f(x) = \sin(x)$. Es gilt: $\int_{-\infty}^{\pi} f(x) dx = 1$	

1	Wie alt sind alle Schüler der Schule zusammen? Überschlage!	ca. 14.000 Jahre
2	Geben Sie eine Gleichung mit den Lösungen $t = 3$ und $t = -5$ an.	z.B. $(t-3) \cdot (t+5) = 0$
3	Die Halbwertszeit einer radioaktiven Substanz beträgt eine Woche. Wann ist nur noch etwa ein Tausendstel der Substanz vorhanden?	Nach ca. 10 Wochen.
4	Gegeben ist die in IR definierte Funktion $f(x) = \sin(x)$. Es gilt: $\int_{0}^{\frac{\pi}{2}} f(x) dx = 1$. a Geben Sie den Wert des Integrals $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(x) dx$ an. b Begründen Sie ohne Verwendung einer Stammfunktion, dass $\int_{0}^{5\pi} f(x) dx = 2$ gilt. c Beschreiben Sie, wie der Graph der in IR definierten Funktion $h(x) = 1 + 2 \cdot \sin(x)$ aus dem Graphen von f hervorgeht.	a) $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(x) dx = 0$ b) Aus der Periodizität von f folgt: $\int_{0}^{5\pi} f(x) dx = \int_{0}^{\pi} f(x) dx$ Aufgrund der Symmetrie des Graphen von f gilt: $\int_{0}^{\pi} f(x) dx = 2 \cdot \int_{0}^{\frac{\pi}{2}} f(x) dx$ Damit: $\int_{0}^{5\pi} f(x) dx = 2 \cdot 1 = 2$ c) Der Graph von h geht – unter Beachtung der Reihenfolge – aus dem Graphen von f hervor durch: 1. Streckung mit dem Faktor 2 in y-Richtung 2. Verschiebung um 1 in positive y-Richtung

1	Wie groß ist das Volumen dieses Raumes?	zum Raum passende Lösung
2	Geben Sie alle Lösungen der Gleichung $x^3 - 2 = 25$ an.	x = 3
3	Wenn man die Kantenlänge eines Würfels verdoppelt, mit welchem Faktor vervielfacht sich dann das Volumen?	2 ³ =8
4	 a Die Abbildung zeigt die Graphen einer Funktion und der zugehörigen Ableitungsfunktion. Entscheiden Sie, welcher der Graphen I und II die Ableitungsfunktion darstellt. Begründen Sie Ihre Entscheidung. b Eine nicht lineare Funktion h hat keine Nullstelle. Der Graph von h nähert sich für x → -∞ asymptotisch der Geraden mit der Gleichung y = -3. Geben Sie einen Funktionsterm von h an und skizzieren Sie den zugehörigen Graphen. 	a Graph II Begründung: Graph I schneidet für ein x ∈ [-7;-6] die x-Achse. Würde Graph I die Ableitungsfunktion darstellen, so müsste Graph II für dieses x ∈ [-7;-6] einen Extrempunkt haben. Da dies nicht der Fall ist, stellt Graph II die Ableitungsfunktion dar. b h(x) = -e ^x - 3

1	Wie viele Kästchen sind ungefähr auf einer beidseitig bedruckten DIN A4-Seite Karopapier?	ca 4800
2	Geben Sie die Lösungen der Gleichung $3^t + 7 = 8$ an.	t = 0
3	Wenn man die Kantenlänge eines Würfels verdoppelt, wie verändert sich dann die Oberfläche?	Die neue Oberfläche ist viermal so groß.
4	Abbildung 1 stellt für einen Wassertank die Zufluss- bzw. Abflussrate (in m³/l) von Wasser für einen Beobachtungszeitraum von sechs Stunden dar. Zu Beginn der Beobachtung enthält der Tank 2m³ Wasser. a Bestimmen Sie das Volumen des Wassers, das sich zwei Stunden nach Beobachtungsbeginn im Tank befindet. b Skizzieren Sie in Abbildung 2 den Graphen, der die Entwicklung des Volumens des Wassers im Tank in Abhängigkeit von der Zeit darstellt.	a Zwei Stunden nach Beobachtungsbeginn befinden sich etwa 5,8 m³ Wasser im Tank. b 12

1	Wie weit kommt man in zweieinhalb Stunden, wenn man auf der Autobahn 130 km/h fährt?	
2	Ergänzen Sie: Die Gleichung $\cdot x + 6 = 0$ hat die Lösung $x = 18$.	
3	Eine Bakterienart verdoppelt sich alle 20 Minuten. Aus anfänglich 1000 Bakterien sind nach zwei Stunden geworden.	
4		
(IQB, Niveau		
II)		
	Gegeben ist die Funktion $f: x \mapsto \ln(e^2 - x)$ mit maximalem Definitionsbereich D.	
	a Geben Sie D an.	
	b Bestimmen Sie die Nullstelle von f.	
	c Weisen Sie rechnerisch nach, dass $y = -\frac{1}{e^2} \cdot x + 2$ eine Gleichung der Tangente an den Graphen von f im Punkt $(0 \mid f(0))$ ist.	

1	Wie weit kommt man in zweieinhalb Stunden, wenn man auf der Autobahn 130 km/h fährt?	325 km
2	Ergänzen Sie: Die Gleichung $\cdot x + 6 = 0$ hat die Lösung $x = 18$.	$-\frac{1}{3}$
3	Eine Bakterienart verdoppelt sich alle 20 Minuten. Aus anfänglich 1000 Bakterien sind nach zwei Stunden geworden.	64.000
4	 Gegeben ist die Funktion f: x → In(e² - x) mit maximalem Definitionsbereich D. a Geben Sie D an. b Bestimmen Sie die Nullstelle von f. c Weisen Sie rechnerisch nach, dass y = -1/e² · x + 2 eine Gleichung der Tangente an den Graphen von f im Punkt (0 f(0)) ist. 	a $D = \{x \in IR \mid x < e^2\}$ b $f(x) = 0 \Leftrightarrow x = e^2 - 1$
		c $f'(x) = \frac{1}{x-e^2}$ Es gilt: $f(0) = 2$, $f'(0) = -\frac{1}{e^2}$

1	Wie viel verdient jemand mit einem Lohn von 12 Euro pro Stunde und 4 Arbeitsstunden wöchentlich ungefähr pro Monat?	
2	Geben Sie alle Lösungen der Gleichung $u^2 = u^4$ an.	
3	Eine Algenart verdoppelt sich alle 2 Tage. Aus anfänglich 3m² sind nach zehn Tagen geworden.	
4 (IQB, Niveau II	 Gegeben ist die Funktion f:x → ln(e² - x) mit maximalem Definitionsbereich D. a Geben Sie D an. b Bestimmen Sie die Nullstelle von f. c Weisen Sie rechnerisch nach, dass y = -1/e² · x + 2 eine Gleichung der Tangente an den Graphen von f im Punkt (0 f(0)) ist. 	

1	Wie viel verdient jemand mit einem Lohn von 12 Euro pro Stunde und 4 Arbeitsstunden wöchentlich ungefähr pro Monat?	ca. 200 Euro
2	Geben Sie alle Lösungen der Gleichung $u^2 = u^4$ an.	u = 0, u = 1, u = -1
3	Eine Algenart verdoppelt sich alle 2 Tage. Aus anfänglich 3m² sind nach zehn Tagen geworden.	$3m^2 \cdot 2^5 = 96m^2$
4	 Gegeben ist die Funktion f:x → In(e² - x) mit maximalem Definitionsbereich D. a Geben Sie D an. b Bestimmen Sie die Nullstelle von f. c Weisen Sie rechnerisch nach, dass y = -1/e² · x + 2 eine Gleichung der Tangente an den Graphen von f im Punkt (0 f(0)) ist. 	Der Graph von f schneidet das Rechteck für $x = 2$ und $x = 4$. Inhalt der Fläche, die der Graph von f mit der x-Achse und der Geraden mit der Gleichung $x = 4$ einschließt: $\int_2^4 f(x) dx = \left[2x + \frac{8}{x}\right]_2^4 = 2$ Flächeninhalt des Rechtecks: 6 Verhältnis: 1:2

1	Berechnen Sie näherungsweise 24,8·7,1.	
2	Lösen Sie die Gleichung $4 \cdot 4^z = \frac{1}{16}$.	
3	Der radioaktive Zerfall einer Substanz wird durch $80g \cdot 0,1'$ (Zeit t in Jahren) beschrieben. Wann sind nur noch ca. 8mg der Substanz vorhanden.	
4 (LS; Analysis kompakt, S.53)	Der abgebildete Graph modelliert die Vertikalgeschwindigkeit eines Segelflugzeugs. Zu Beginn der Messung ist das Flugzeug 400 m hoch. Steigt das Flugzeug, so ist v positiv. a) Bestimmen Sie die Höhe, auf der sich das Flugzeug zu den Zeitpunkten t ₁ = 20 s und t ₂ = 40 s befindet. b) Geben Sie den Zeitpunkt an, zu dem sich das Flugzeug auf maximaler Höhe befindet. c) Bestimmen Sie den Zeitpunkt, zu dem das Flugzeug auf einer Höhe von 395 m fliegt.	

1	Berechnen Sie näherungsweise $24.8 \cdot 7.1$.	ca.175 .
2	Lösen Sie die Gleichung $4 \cdot 4^z = \frac{1}{16}$.	z = -3.
3	Der radioaktive Zerfall einer Substanz wird durch $80g\cdot 0.1^t$ (Zeit t in Jahren) beschrieben. Wann sind nur noch ca. 8mg der Substanz vorhanden.	nach 4 Jahren
4	Der abgebildete Graph modelliert die Vertikalgeschwindigkeit eines Segelflugzeugs. Zu Beginn der Messung ist das Flugzeug 400 m hoch. Steigt das Flugzeug, so ist v positiv. a) Bestimmen Sie die Höhe, auf der sich das Flugzeug zu den Zeitpunkten t ₁ = 20 s und t ₂ = 40 s befindet. b) Geben Sie den Zeitpunkt an, zu dem sich das Flugzeug auf maximaler Höhe befindet. c) Bestimmen Sie den Zeitpunkt, zu dem das Flugzeug auf einer Höhe von 395 m fliegt.	 a) Orientierter Flächeninhalt von 0 bis 20: 30 FE, dies entspricht einer Höhenzunahme von 30 Metern, das Flugzeug befindet sich also dann in einer Höhe von 430 m. Von 20 bis 40 ergibt sich als orientierter Flächeninhalt (10 – 5) FE = 5 FE, dies entspricht einer Höhenzunahme von 5 m, die Flughöhe nach 40 s ist 435 m. b) Das Flugzeug befindet sich bei t = 30 s auf maximaler Höhe, da der Graph bis t = 30 oberhalb der x-Achse verläuft. Dies entspricht einer Höhenzunahme. c) Gesucht ist der Zeitpunkt t₀, sodass der orientierte Flächeninhalt im Bereich [0; t₀] –5 FE beträgt. Dies ist für t₀ = 60 der Fall. Nach 60 s fliegt das Flugzeug auf einer Höhe von 395 m.

1	Berechnen Sie näherungsweise $\sqrt{120}$.		
2	Lösen Sie die Gleichung $(x-2)\cdot (4-x)=0$.		
3	Ein Kapital K_0 wird mit p Prozent jährlich verzinst. Geben Sie einen Term für den Kontostand nach x Jahren an.		
4 (LS; Analysis			
kompakt, S.19)	 a) Bestimmen Sie die Steigung des Graphen von f mit f(x) = (2x - 1)³ im Punkt P(1 f(1)). b) Bestimmen Sie die Koordinaten des Punktes, in dem der Graph von g mit g(x) = 1/((x - 1)²) die Steigung - 2 hat. c) Prüfen Sie, ob der Graph von h mit h(x) = 1/(1-x²) Punkte hat, an denen die Tangente parallel zur x-Achse verläuft. 		
	Zur X-Acrise verlaurt.		

1	Berechnen Sie näherungsweise $\sqrt{120}$.	ca. 11
2	Lösen Sie die Gleichung $(x-2)\cdot(4-x)=0$.	x = 2, x = 4
3	Ein Kapital K_0 wird mit p Prozent jährlich verzinst. Geben Sie einen Term für den Kontostand nach x Jahren an.	$K_0 \cdot (1 + \frac{p}{100})^x$
4	 a) Bestimmen Sie die Steigung des Graphen von f mit f(x) = (2x - 1)³ im Punkt P(1 f(1)). b) Bestimmen Sie die Koordinaten des Punktes, in dem der Graph von g mit g(x) = 1/((x - 1)²) die Steigung - 2 hat. c) Prüfen Sie, ob der Graph von h mit h(x) = 1/(1-x²) Punkte hat, an denen die Tangente parallel zur x-Achse verläuft. 	9 a) $f'(x) = 6(2x - 1)^2$; $f'(1) = 6$ b) $g'(x) = \frac{-2}{(x - 1)^3} = -2 \implies x = 2$ $g(2) = 1$; $P(2 1)$ c) $h'(x) = \frac{2x}{(1 - x^2)^2} = 0 \implies x = 0$ Es gibt einen Punkt, an dem die Tangente parallel zur x-Achse verläuft.